Grid peeling and the affine curve-shortening flow

نویسندگان

  • David Eppstein
  • Sariel Har-Peled
  • Gabriel Nivasch
چکیده

In this paper we study an experimentally-observed connection between two seemingly unrelated processes, one from computational geometry and the other from differential geometry. The first one (which we call grid peeling) is the convex-layer decomposition of subsets G ⊂ Z of the integer grid, previously studied for the particular case G = {1, . . . ,m} by Har-Peled and Lidický (2013). The second one is the affine curve-shortening flow (ACSF), first studied by Alvarez et al. (1993) and Sapiro and Tannenbaum (1993). We present empirical evidence that, in a certain well-defined sense, grid peeling behaves at the limit like ACSF on convex curves. We offer some theoretical arguments in favor of this conjecture. We also pay closer attention to the simple case where G = N is a quarter-infinite grid. This case corresponds to ACSF starting with an infinite L-shaped curve, which when transformed using the ACSF becomes a hyperbola for all times t > 0. We prove that, in the grid peeling of N, (1) the number of grid points removed up to iteration n is Θ(n log n); and (2) the boundary at iteration n is sandwiched between two hyperbolas that are separated from each other by a constant factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Affine Heat Equation for Non-convex Curves

In the past several years, there has been much research devoted to the study of evolutions of plane curves where the velocity of the evolving curve is given by the Euclidean curvature vector. This evolution appears in a number of different pure and applied areas such as differential geometry, crystal growth, and computer vision. See for example [4, 5, 6, 15, 16, 17, 19, 20, 35] and the referenc...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Curve Shortening Flow in a Riemannian Manifold

In this paper, we systemally study the long time behavior of the curve shortening flow in a closed or non-compact complete locally Riemannian symmetric manifold. Assume that we have a global flow. Then we can exhibit a a limit for the global behavior of the flow. In particular, we show the following results. 1). Let M be a compact locally symmetric space. If the curve shortening flow exists for...

متن کامل

The Influence of Smart Grid on TOU Programs With Respect to Production Cost and Load Factor, A Case Study of Iran

Reaching an electricity system which is both economically efficient and environmentally friendly is motivating countries to design and execute different types of TOU demand response programs. But there are certain deficiencies which prevent these programs to effectively modify the load shape. Smart grid as a means could help the electricity system to reach the highest demand side management ...

متن کامل

Adaptation of Structured Grid for Supersonic and Transonic Flows

Two distinct redistribution grids - adaptation techniques, spring analogy and elliptic grid generator are applied to two-dimensional steady, inviscid, shocked flows, and the ability of each technique is examined and compared. Euler equations are solved base on Roe's Reimann solver approach to simulate supersonic flow around a sphere, transonic flow about an airfoil and supersonic flow in a symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018